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ABSTRACT

Objective: To systematically review the evidence concerning the diagnostic yield of genetic and met-
abolic evaluation of children with global developmental delay or intellectual disability (GDD/ID).

Methods: Relevant literature was reviewed, abstracted, and classified according to the 4-tiered
American Academy of Neurology classification of evidence scheme.

Results and Conclusions: In patients with GDD/ID, microarray testing is diagnostic on average in
7.8% (Class III), G-banded karyotyping is abnormal in at least 4% (Class II and III), and subtelo-
meric fluorescence in situ hybridization is positive in 3.5% (Class I, II, and III). Testing for X-linked
ID genes has a yield of up to 42% in males with an appropriate family history (Class III). FMR1
testing shows full expansion in at least 2% of patients with mild to moderate GDD/ID (Class II and
III), and MeCP2 testing is diagnostic in 1.5% of females with moderate to severe GDD/ID (Class
III). Tests for metabolic disorders have a yield of up to 5%, and tests for congenital disorders of
glycosylation and cerebral creatine disorders have yields of up to 2.8% (Class III). Several genetic
and metabolic screening tests have been shown to have a better than 1% diagnostic yield in
selected populations of children with GDD/ID. These values should be among the many factors
considered in planning the laboratory evaluation of such children. Neurology® 2011;77:1629–1635

GLOSSARY
AAN � American Academy of Neurology; BAC � bacterial artificial chromosome; CDG � congenital disorders of glycosyla-
tion; DQ � developmental quotient; DXL � definite X-linkage; GDD � global developmental delay; ID � intellectual disability;
IEM � inborn errors of metabolism; PXL � possible X-linkage; UXL � unknown X-linkage; XLID � X-linked intellectual disability.

Children aged less than 6 years are considered to
have global developmental delay (GDD) if they per-
form more than 2 SDs below age-matched peers in
2 or more aspects of development.1,2 GDD affects
an estimated 1%–3% of children, many of whom
will demonstrate intellectual disability (ID).1,2 In
this evidence report, a developmental quotient
(DQ) or IQ of 50 –70 is considered mild impair-
ment, and a DQ or IQ of less than 50 is consid-
ered moderate to severe impairment.

The previous American Academy of Neurology and
Child Neurology Society guideline regarding evaluation

of GDD concluded that several diagnostic tests had a
greater than 1% yield, including G-banded karyotyp-
ing, FMR1 gene testing, subtelomeric fluorescence in
situ hybridization (StFISH) testing, MeCP2 gene test-
ing in girls with moderate to severe impairment, neuro-
imaging (MRI preferred to CT), and assessments for
visual and hearing deficits.3 Genetic advances prompted
the development of this updated report focused solely
on the diagnostic yield of genetic and metabolic testing.

DESCRIPTION OF THE ANALYTIC PROCESS
Literature searches for this evidence report were com-
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pleted for the years 1980–2009 and resulted in 7,000
abstracts, 367 of which were selected for full-text re-
view. See appendix e-2, a and b, on the Neurology®

Web site at www.neurology.org for information on da-
tabases searched, search terms used, and article classifi-
cation. Table e-1 presents the diagnostic yield in
different populations for various testing methods.

ANALYSIS OF EVIDENCE Genome-wide genetic
testing. Genetic evaluation of a child with GDD/ID
who lacks distinctive syndromic features generally
begins with genome-wide testing for DNA rear-
rangements. G-banded karyotyping detects chromo-
somal structural changes with a resolution of 3–5
million base pairs (3–5 Mb). StFISH and microarray
tests detect specific copy number changes (most
commonly deletions or duplications) for which the
specific probes are constructed.4 Microarray tests based
on bacterial artificial chromosome (BAC) probes typi-
cally have a resolution of 1 Mb, and those based on
oligonucleotide probes typically have resolutions of
30,000–35,000 base pairs (kb). Microarray testing de-
tects well-known syndromes (e.g., Velo-cardio-facial
syndrome or Williams syndrome) as well as previously
undescribed genomic disorders. Interpretation of mi-
croarray abnormalities of uncertain significance will of-
ten require referral for a medical genetics consultation.
Abnormal results are considered diagnostic when previ-
ously reported to be causative and are considered possibly
diagnostic when absent in unaffected parents.5 When ab-
normal results of uncertain significance are inherited from
an unaffected parent, interpretation should be made cau-
tiously, given the possibility of variable penetrance.

Microarray studies. The results of studies reporting
microarray test yields are summarized in appendix e-3.
Twenty-seven Class III studies of 6,559 subjects with
GDD/ID found microarray testing to be diagnostic in
7.8% (range 0%–50%).6–32 A higher yield of 10.2%
(0%–50%) was found in the 18 studies in which the
1,524 subjects were described as syndromic (facial dys-
morphism, congenital anomalies, or neurologic symp-
toms).6–23 A lower yield of 6.4% was found in the one
study in which all 94 subjects were described as nonsyn-
dromic.24

G-banded karyotype studies. The results of studies
reporting karyotype test yields are summarized in ap-
pendix e-4. A Class II study of 342 patients with
unexplained GDD/ID found that 4% had an ab-
normal karyotype.33 Nine Class III studies found a
similar yield of 4.2% (2.9%–11.7%) in 4,032 pa-
tients.34 – 40,e1,e2 Three Class III studies of 70 sub-
jects with syndromic GDD/ID found a much
higher yield of 18.6% (6.7%–50%).36,38,e3

StFISH studies. The results of studies reporting
StFISH test yields are summarized in appendix e-5.

One Class I study found StFISH abnormalities in
5.9% of 466 patients with unexplained GDD/ID.e4

Two Class II studies of 374 patients found StFISH
abnormalities in 4.8% (4.2%–5.1%).e5,e6 Thirty-
seven Class III StFISH studies found abnormalities
in 3.5% (0%–20%) of 18,583 patients with either
GDD/ID or multiple congenital anomalies.e3,e7–e42 In
subjects with milder impairment, StFISH had a yield
of 0.5% in 1 Class I study of 182 patients and of
1.7% (0%–10.3%) in 6 Class III studies of 290
patients. In subjects with moderate/severe impair-
ments, StFISH had a yield of 7.4% in 1 Class I
study of 284 patients and of 8.5% (0%–12.5%) in
7 Class III studies of 460 patients. In subjects with
syndromic features, StFISH had a yield of 4.2% in
1 Class II study of 120 patients and of 5.4%
(1.3%–20%) in 11 Class III studies of 1,439 pa-
tients. Two studies demonstrated that the use of
clinical checklists to restrict StFISH testing to pa-
tients with more severe GDD/ID, syndromic fea-
tures, and a positive family history increased the
yield to 28.6%.e7,e43

Few studies have directly compared genome-wide
genetic tests. One Class III study (n � 94) compar-
ing microarray with StFISH found abnormalities in
9 subjects, including 6 that were seen only by mi-
croarray.e44 The same study reported that 12% of
424 subjects with syndromic GDD/ID had mi-
croarray abnormalities, most of which were inter-
stitial (i.e., not in areas screened by StFISH).
Another Class III study of BAC-based microarray
in 278 patients with GDD/ID found subtelomeric
abnormalities in 3 patients who had prior normal
StFISH test results.30 Most studies of microarrays
and StFISH tests were done on children whose
karyotype testing had been normal. It is reasonable
to hypothesize that the yields would have been
higher if subjects were not initially screened by
karyotyping.

Conclusions. Microarray testing is abnormal on av-
erage in 7.8% of subjects with GDD/ID and in
10.6% of those with syndromic features (Class III).
Karyotype studies are abnormal in at least 4% of sub-
jects with GDD/ID and in 18.6% of those with syn-
dromic features (Class II and III). StFISH testing is
abnormal in at least 3.5% of subjects with GDD/ID,
in at least 4.2% of those with syndromic features, in
as few as 0.5% of those with mild impairment, and
in at least 7.4% of those with moderate/severe im-
pairment (Class I, II, and III).

X-linked genetic testing. X-linked intellectual disabil-
ity (XLID) is estimated to account for approximately
10% of all cases of ID.e45 More than 70 genes respon-
sible for XLID in which mutations have been identi-
fied have been cloned.e46 There are more than 100
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genes that have been identified by linkage and not
yet cloned and another 9 segmental duplications of
the X chromosome.

X-linked ID gene studies. The results of studies re-
porting XLID gene test yields are summarized in ap-
pendix e-6. One Class III study compiled sequencing
efforts from 600 families with multiple males af-
fected by either GDD/ID or other neurologic abnor-
malities that remained unexplained after karyotype
and FMR1 testing.e47 X-linkage was considered defi-
nite (DXL) in 325 families, possible (PXL) in 191
families, and unknown (UXL) in 84 families. Sixteen
genes were sequenced in more than 100 families, and
mutations were found in 42% of families with DXL
and 17% of families with PXL. Mutations in XLID
genes also were found in some males from UXL
families.

The XLID genes tested individually in these fam-
ilies include the ARX, JAR1D1C, and SLC6A8 genes.
One Class III study from the European XLMR co-
hort identified ARX mutations in 7.5% of 147 DXL
families and 1.5% of 136 PXL families.e48 Another
Class III study found ARX mutations in 5% of 80
DXL families and 1.2% of 85 PXL families.e49 Two
Class III studies found JARID1C mutations in 3.1%
of 323 DXL or PXL families.e50,e51 One Class III
study found JAR1D1C mutations in 8.6% of 23
DXL or PXL families, 0.6% of 172 UXL families,
and 1.1% of 92 isolated males with short stature.e52

One Class III study found SLC6A8 mutations in
2.1% of 288 patients from DXL or PXL families,e53

whereas another Class III study found SLC6A8 mu-
tations in 0.4% of 478 unrelated males with unex-
plained GDD/ID.e54

FMR1 gene studies. The FMR1 gene at Xq27.3 nor-
mally contains 5–40 consecutive CGG trinucleotide
repeats. When 55–200 repeats are present, the gene
has an unstable “premutation” length that is prone
to further expansion during meiosis. A full expan-
sion to more than 200 repeats is associated with
the dysmorphism, ID, and social impairment of
fragile X syndrome.

The results of studies reporting FMR1 gene test
yields are summarized in appendix e-7. Four Class II
studies found full FMR1 expansions in 2% (0.7%–
6.4%) of 2,226 patients (55.5% males) with unex-
plained mild/moderate GDD/ID.e55–e58 Another 17
Class III studies (n � 24,216) found full expansions
in 2.5% (0%–11.7%).35,39,e59–e73 Full FMR1 expan-
sions were found in 2.6% (1%–8%) of 1,236 male
subjects from 4 Class II studiese55–e58 and in 2.9%
(2%–13.7%) of 15,698 male subjects from 6 Class
III studies.e61,e65,e67,e73–e75 Full FMR1 expansions were
found in 1.3% (0%–7%) of 1,340 female subjects
from 6 Class II studiese55–e58,e76,e77 and 1.1% (0.7%–

7.5%) of 6,315 female subjects from 3 Class III
studies.e61,e65,e73 Two Class III studies found full
FMR1 expansion in only 1 (0.3%) of 291 subjects
with severe GDD/ID.e78,e79 In 3 Class III studies,
full FMR1 expansion was seen in 15.2% (9.7%–
55%) of 164 boys with high clinical scores for
fragile X syndrome but in none of 411 boys with
low scores.e80 – e82

MeCP2 gene studies. Mutations in the MeCP2 gene
are associated with Rett syndrome, an X-linked dom-
inant neurodevelopmental disorder primarily affect-
ing girls. The results of studies reporting MeCP2
gene test yields are summarized in appendix e-8. Five
Class III studies found MeCP2 mutations in 0.4%
(0%–1.5%) of 1,194 subjects (70% male) with mod-
erate/severe GDD/ID.e84–e88 Four Class III studies
found MeCP2 mutations in 1.5% (0%–4.4%) of 324
girls with moderate/severe GDD/ID.e84,e86,e88,e89 Nine
Class III studies found MeCP2 mutations in 0.2%–
0.4% (4 mutations of unclear significance) of 2,291
boys with GDD/ID.e84,e86,e88,e90–e95

Conclusions. Mutations in X-linked genes may ex-
plain up to 10% of all cases of GDD/ID. Testing of
XLID genes has a yield of 42% in males from defi-
nitely X-linked families and of 17% in males from
possibly X-linked families (Class III). FMR1 testing
has a combined yield of at least 2% in male and fe-
male subjects with mild GDD/ID (Class II and III).
MeCP2 mutations are found in 1.5% of girls with
moderate/severe GDD/ID and in less than 0.5% of
males with GDD/ID (Class III).

Metabolic testing. Inborn errors of metabolism
(IEMs) are a diverse collection of disorders of inter-
mediate (carbohydrate, amino acid, and lipid) me-
tabolism that are caused by dysfunction of an enzyme
encoded by a single gene. IEMs have wide pheno-
typic variation and can present with static encepha-
lopathy but may be suspected on the basis of
historical features (affected family members, parental
consanguinity, episodic decompensation, develop-
mental regression), physical findings (coarse facial
features, organomegaly), or neuroimaging findings
(abnormal myelination, striatal necrosis).

The results of studies reporting metabolic test
yields are summarized in appendix e-9. One Class II
study of 151 patients with GDD/ID found meta-
bolic screening tests to have a 5% yield.e96 Seven
Class III studies found a yield of 1.8% (0%–4.6%)
in 3,862 patients with GDD/ID.40,e39,e97–e102 In one
of these studies, selective IEM testing performed be-
cause of clinical suspicion was diagnostic in 8–10
(range 3.7%– 4.6%) of 216 patients with unex-
plained GDD/ID.e39 None of the 176 screening tests
for plasma amino acids and urine organic acids was
abnormal. Four children (1.4%) with congenital dis-
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orders of glycosylation (CDG) were identified by
plasma sialotransferrin analysis, 2 children had ab-
normal serum cholesterol and 7-dehydrocholesterol
levels suggestive of Smith-Lemli-Opitz syndrome, 2
had laboratory evidence of a mitochondrial disorder,
1 had laboratory evidence of a peroxisomal disorder,
and 1 had abnormal CSF biogenic amine levels. In
another of these Class III studies, metabolic testing
was redone in 433 children whose GDD/ID re-
mained unexplained after genetic/metabolic testing
that included a standard karyotype; urine for amino
acids, organic acids, mucopolysaccharides, oligosac-
charides, uric acid, sialic acid, purines, and pyrimi-
dines; and plasma for amino acids, acylcarnitines,
and sialotransferrins.e102 Screening tests were re-
peated, and additional testing, including CSF stud-
ies, was guided by clinical suspicion. IEMs were
identified and confirmed in 12 patients (2.7%),
including 3 with mitochondrial disorders, 2 with
creatine transporter disorders, 2 with short-chain acyl-
CoA dehydrogenase deficiency, and 1 each with San-
filippo IIIa, a peroxisomal disorder, a CDG,
5-methyltetrahydrofolate reductase deficiency, and
GLUT1 deficiency.

Several studies have screened for disorders of cre-
atine synthesis and transport by measuring urine cre-
atine and guanidinoacetate. One Class III study
screened 188 male and female subjects with unex-
plained GDD/ID and identified 5 (2.7%) boys with
severe to profound impairment who had abnor-
malities.e103 Another Class III study of 1,600 unre-
lated male and female children with GDD/ID
and/or autism found that 34 (2.1%) had abnormal
urine creatine-to-creatinine ratios, although only
10 (0.6%) had abnormal repeat tests and only 3
(0.2%) were found to have a mutation in the
X-linked SLC6A8 gene.e104 As mentioned earlier, a
Class III study found SLC6A8 mutations in 0.4%
of 478 unrelated males with unexplained GDD/
ID.e105 Another Class III study of 180 institution-
alized subjects with unexplained severe to
profound GDD/ID found 5 (2.8%) with muta-
tions in the autosomal GAMT gene, 2 (1.1%) of
which were clearly pathologic.e106

Conclusions. Screening for IEMs in children with
GDD/ID has a yield of between 0.2% and 4.6%,
depending on the presence of clinical indicators and
the range of testing performed (Class III). Testing for
CDGs has a yield of up to 1.4%, and testing for
creatine synthesis and transport disorders has a yield
of up to 2.8% (Class III).

CLINICAL CONTEXT We reviewed numerous stud-
ies that found yields of more than 1% for various
genetic and metabolic tests in children with unex-

plained GDD/ID. Most of the studies were classified
as providing Class III evidence because their subjects
were drawn from referral-based neurology and genet-
ics specialty clinics, where most decisions regarding
testing are and will continue to be made. The yield of
a given test is admittedly only one of many factors to
be considered when planning a diagnostic testing
strategy for a child with GDD or ID. Other factors
include the ability of a test to identify a treatable
disorder; the pretest probability of presence of a dis-
ease based on clinical features and family history; and
the availability, invasiveness, and cost of testing.

An etiologic diagnosis for GDD or ID only occa-
sionally leads to a specific therapy that improves the
child’s outcome; however, it often leads to other ben-
efits for the child and the child’s family. These bene-
fits include relieving caregivers of anxiety and
uncertainty, empowering caregivers to become in-
volved in support and research networks, limiting
further diagnostic testing that may be costly or inva-
sive, improving understanding of treatment and
prognosis, anticipating and managing associated
medical and behavioral comorbidities, allowing for
counseling regarding recurrence risk, and preventing
recurrence through screening for carriers and prena-
tal testing.e107

The evaluation of children with neurodevelop-
mental disabilities is evolving as previously unrecog-
nized disease mechanisms are uncovered and novel
and increasingly sensitive methods for diagnosis are
introduced, improving etiologic yields.e108 Physicians
who develop their familiarity with the clinical fea-
tures and testing of genetic and metabolic disorders
will likely be more efficient in their patient evalua-
tions, ordering fewer tests rather than more. Many
children seen for GDD/ID do not present with syn-
dromic features or a positive family history.

Microarray is the genetic test with the highest diag-
nostic yield in children with unexplained GDD/ID.
The resolution of the current generation of commer-
cially available, genome-wide, oligonucleotide-based
microarray testing is 700 base pairs, 30 to 40 times
higher than the oligo-based tests previously used in
studies of GDD/ID and 1,000 times higher than older
BAC-based microarrays. Laboratories now offer single
nucleotide polymorphism sensitive microarray that
detects and describes consanguinity or uniparental
disomy. Studies on the yield of these more advanced
microarray tests are anticipated in the near future.
Currently, microarray testing can identify only un-
balanced copy number changes and is insufficiently
sensitive for detecting genetic disorders caused by
inversions, balanced insertions, reciprocal transloca-
tions, polyploidy, low-level mosaicism (�20%–
25%), rearrangements in repeat sequences, point
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mutations, or duplications/deletions that are unde-
tectable at the test’s resolution level. The results of
microarray testing are often complex and require
confirmation and careful interpretation, often with
the assistance of a medical geneticist.

The other genome-wide genetic tests reviewed,
G-banded karyotyping and StFISH testing, have a
lower sensitivity for abnormalities in similar popula-
tions of children with unexplained GDD/ID. There
is consensus among clinical geneticists that microar-
rays should be considered first-line cytogenetic tests,
preferred over StFISH testing and karyotyping, with
karyotyping reserved for patients having signs of a
specific chromosomal syndrome (e.g., Down syn-
drome), a family history of a chromosomal rear-
rangement, or a parent with a history of multiple
miscarriages.e109

Males with a history strongly suggestive of
X-linked inheritance may be considered for testing of
one or more individual XLID genes or for screening
of the entire X chromosome. Girls with severe im-
pairment may be appropriate for testing for MeCP2
mutations, regardless of whether the specific clinical
features of Rett syndrome are present.

There may be greater suspicion for IEMs in chil-
dren whose parents either are consanguineous or
have had children with similar problems or unex-
plained death or fetal demise. Children with IEMs
may have multiple organ system dysfunction, failure
to thrive, dietary selectivity, unusual odors, hearing
loss, or episodic symptoms, including seizures or en-
cephalopathy. The importance of considering IEMs
requires emphasis, because for some entities specific
dietary or metabolic treatments may improve neuro-
logic symptoms.

In addition to the clinical matters considered
above it is important to remember that genetic test-
ing is costly and may not be available to all families.
Some of the critical matters related to the cost analy-
sis of performing microarray testing are summarized
in appendix e-11.

RECOMMENDATIONS FOR FUTURE RESEARCH

1. Further prospective studies on the etiologic yields
of various diagnostic tests need to be undertaken
on large numbers of young children with
GDD/ID and control subjects. Such studies
should include newer molecular genetic and MRI
technologies. With the resulting data, prospective
testing of specific evaluation paradigms will be
possible.

2. Features (i.e., markers) present on the history and
physical examination at intake need to be identi-
fied that will improve specific evaluation strate-
gies and enhance etiologic yield.

3. More information is needed about testing
younger children with mild GDD who may have
normal cognitive function. It would be helpful to
know which children have a sufficient degree of
delay to justify testing. Alternative strategies of
conducting testing simultaneously or sequentially
need to be critically assessed. Such information
should help reduce unnecessary testing and pro-
vide cost-effective evaluations and more accurate
diagnostic yields. Protocols for testing need to be
compared to determine which are most appropri-
ate in different clinical scenarios.

4. Research is sorely lacking on the medical, social,
and financial benefits of having an accurate etio-
logic diagnosis. It may be that testing for rela-
tively rare IEMs has a more substantial impact on
families and society than testing for genetic syn-
dromes, given how often the diagnosis directly
influences patient treatment and outcome. The
ability to rate diagnostic tests on the basis of fac-
tors other than diagnostic yield, such as the avail-
ability of effective treatment, would have a
positive influence on clinical practice.
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