Children’s Achievement in Early Elementary School: Longitudinal Effects of Parental Involvement, Expectations, and Quality of Assistance

Michelle M. Englund, Amy E. Luckner, Gloria J. L. Whaley, and Byron Egeland
University of Minnesota, Twin Cities Campus

In this prospective, longitudinal study, the authors examined the relations among parental behaviors, parental expectations, and children’s academic achievement. Participants were 187 low-income children and their mothers, studied from birth of the child through 3rd grade. Mothers’ quality of instruction prior to school entry had significant direct effects on IQ and indirect effects on achievement in 1st and 3rd grades. Parental expectations in 3rd grade had significant direct effects on parental involvement in 3rd grade. Children’s achievement in 1st grade had significant direct effects on parental involvement and expectations in 3rd grade. Parental involvement in 3rd grade had a significant direct effect on achievement in 3rd grade. Results suggest that early parenting factors are important for children’s academic achievement.

Increasing parental school involvement has been an important part of local, state, and national education initiatives (e.g., Goals 2000; National Education Goals Panel, 1999). To implement these initiatives and increase academic success, many schools are making concerted efforts to reach out to parents and involve them in their children’s education. According to the National Center for Education Statistics (1998), most public elementary schools offer a range of opportunities for parental involvement, including open houses (97%), parent–teacher conferences (92%), and volunteer activities (90%).

This focus on parental involvement has its roots in research demonstrating a positive association between parental involvement and academic achievement. Parental involvement, both at home and at school, is moderately but significantly related to children’s academic achievement (see, e.g., Christenson, Rounds, & Gorney, 1992; Fehrmann, Keith, & Reimers, 1987; Izzo, Weissberg, Kasprow, & Fendrich, 1999; Keith, Keith, Quirk, Cohen-Rosenthal, & Franzese, 1996; Keith et al., 1998; Miedel & Reynolds, 1999; Shaver & Walls, 1998; Stevenson & Baker, 1987). This relation has been found fairly consistently regardless of the sample demographics (e.g., age, ethnicity, sex, or socioeconomic status [SES]) or measure of achievement (e.g., achievement tests, grade point average, grades). Parental involvement is an important predictor of children’s achievement in school.

Even though some researchers have found a relation between parental involvement and achievement, the direction of this relation is not clear from contemporaneous measures, and some researchers (e.g., Shumow & Miller, 2001), when examining longitudinal data, have found that previous achievement predicts parental involvement rather than the opposite. Other researchers have reported mixed results (Deslandes, Royer, Turcotte, & Bertrand, 1997; Fan, 2001; Singh et al., 1995; Sui-Chu & Willms, 1996), including no evidence of a direct effect of parental involvement on children’s academic achievement (Bobbett, French, Achilles, & Bobbett, 1995; Keith, Reimers, Fehrmann, Pottebaum, & Aubey, 1986; Okpala, Okpala, & Smith, 2001) and even negative relations between these two variables (Deslandes et al., 1997; Sui-Chu & Willms, 1996).

These discrepant results probably reflect, at least in part, varying definitions of parental involvement. Operational definitions of parental involvement used in research include communication between parents and teachers (Deslandes et al., 1997); parents’ communication with their children regarding school issues (Keith et al., 1986); number of hours parents volunteer in their children’s schools (Okpala et al., 2001); parental involvement in school activities, such as conferences (Bobbett et al., 1995; Izzo et al., 1999; Miedel & Reynolds, 1999; Stevenson & Baker, 1987); attendance at parent meetings organized by the school (Shaver & Walls, 1998); parental involvement in school-related activities with their children at home, for example, helping with homework (Shumow & Miller, 2001; Singh et al., 1995; Sui-Chu & Willms, 1996); and parental expectations regarding their children’s educational attainment (Keith et al., 1998).

In a few studies, researchers have looked at parental involvement globally, merging various types of involvement into one variable (Keith et al., 1996, 1998; Miliotis, Sesma, & Masten, 1999), with substantial study-to-study variation in the measures included in such composites. Moreover, the inclusion of different dimensions in one composite parental involvement variable makes it difficult to determine which components of parental involvement are driving the association between parental involvement and academic achievement.

When researchers have attempted to disentangle the various components of parental involvement (Fan, 2001; Fan & Chen,
learning experiences and provide assistance to their children when needed early in children’s lives may prepare their children for school entry and provide a basis for them to benefit from educational activities.

Obviously, the relation among parents’ actions, parents’ beliefs, and children’s behavior has not been clearly established. Although there has been some longitudinal research (e.g., Keith et al., 1996, 1998) detailing relations among these variables, involvement or expectations were measured at only one point in time. It is important, when attempting to understand relational processes, to measure not only achievement but also parental involvement and expectations across time. Longitudinal researchers who have included multiple time points have examined either parental involvement and achievement (see, e.g., Izzo et al., 1999) or parental expectations and achievement (see, e.g., Goldenberg et al., 2001) only, not all three factors in combination. The purpose of the current study was to examine longitudinally the interactional process that occurs over time among parental behavior (quality of instruction prior to school entry and parental involvement with school), parental expectations, and children’s academic achievement.

Given the potential effects of both parental involvement and parental expectations on earlier achievement, it is important to examine these variables early in children’s lives. Some researchers have suggested that parental involvement and parental expectations may have a stronger influence on younger children’s achievement compared with that of children in the later years of elementary school through high school (Rogala, 2001; Singh et al., 1995). Furthermore, early experiences with parents in problem-solving situations prior to school entry may play an important role in later academic achievement. Early experiences may be especially important in that the scaffolding parents provide for their children in problem-solving situations may prepare children for later learning and facilitate children’s development of early adaptive skills, such as how to draw on resources to support them in solving problems. These possibilities necessitate examining the relations among the variables under consideration early in children’s schooling.

In this study, it was hypothesized that (a) parental involvement with their children’s school, parental expectations of their children’s educational attainment, and children’s actual achievement are related; (b) parents’ educational level relates to both their actual behavior (quality of instruction and involvement with school) and their expectations for their children; (c) parents’ quality of instruction prior to school entry has direct effects on children’s IQ and achievement early in school; and (d) parental expectations have direct effects on parental involvement, parental involvement with school has direct effects on children’s academic achievement, and academic achievement has direct effects on both parental expectations and parental involvement in a cumulative process over time.

Method

Participants

The participants were drawn from an ongoing longitudinal study of children and their families. Participants were firstborn children (N = 187; 102 male, 85 female) and their mothers, who were recruited through Minneapolis, Minnesota, public health clinics during the third trimester of pregnancy. Mothers were all low income at the time of recruitment, with 99% single at the time of the birth of their children and 3% divorced.

Participants

The participants were drawn from an ongoing longitudinal study of children and their families. Participants were firstborn children (N = 187; 102 male, 85 female) and their mothers, who were recruited through Minneapolis, Minnesota, public health clinics during the third trimester of pregnancy. Mothers were all low income at the time of recruitment, with 99% single at the time of the birth of their children and 3% divorced.
separated, or widowed when their children were born. Approximately 66% of the children were Caucasian, 12% were African American, and 19% were mixed or other minority race (3% were missing father data). The age of the mothers at the birth of their children ranged from 12 years to 34 years ($M = 20.63$, $SD = 3.75$).

Procedures

We examined data from birth through third grade, including interviews with children’s parents and teachers, laboratory observations with mothers and children, and intelligence tests with the children. Early elementary school data were gathered in first and third grades.

Measures

Mother’s education. Each mother’s level of education was determined by asking the mothers, at the birth of their children, to identify the number of years of education they had completed.

Mother’s quality of instruction. When the children were 42 months old, the quality of each mother’s instruction was assessed in a videotaped laboratory procedure in which mother-and-child pairs participated in a set of four developmentally appropriate problem-solving situations. Two independent coders viewing all four tasks rated the instructional behavior of all of the mothers on a 7-point scale, rating how well the mother structured the situation and coordinated her behavior to the child’s activity and needs for assistance. The scale ranged from 1, indicating poor quality of instruction (uninvolved and/or unstructured), to 7, indicating effective instruction throughout the session. This measure, used in a number of previous studies to assess various dimensions of early parent–child interactions, including quality of instruction, correlated with subsequent scores on standardized achievement tests (see, e.g., Connell & Prinz, 2002; Pianta & Egeland, 1994; Pianta et al., 1990, 1997; Pianta & Harbers, 1996).

The rating scores for both observers were summed to form a composite rating (range = 2 to 14). Interrater reliability was determined by computing a single-measure intraclass correlation coefficient (absolute agreement) between the raters. The intraclass correlation for the final composite score was .87.

Child’s IQ. Child’s IQ was assessed at 64 months of age using an abbreviated version of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI; Wechsler, 1967). The total score of four subtests (vocabulary, comprehension, block design, and animal house) was used for data analysis. Each of the subtests correlates with the full scale IQ at vocabulary = .70, comprehension = .65, block design = .61, and animal house = .53 (Sattler, 1992; Wechsler, 1967). A higher correlation results when the four subtest scores are combined and correlated with the full scale (Wechsler, 1967). Additionally, Sattler (1992) reported that correlations between the WPPSI and Wechsler Intelligence Scale for Children—Revised (verbal, performance, and full scale; Wechsler, 1974) completed 11 years later ranged from .73 to .86.

Parental expectations. Parental expectations were assessed at Grades 1 and 3. During a semistructured interview, parents were asked the open-ended question “How far do you think your child will go in school?” A 5-point scale to code parents’ responses ranging from will not complete high school to will go to graduate or professional school was developed. Such expected educational attainment has often been used as a measure of parental expectations in elementary as well as high school (see, e.g., Fan, 2001; Gill & Reynolds, 1999; Goldenberg et al., 2001; Halle et al., 1997; Seginer, 1983; Singh et al., 1995). The open-ended nature of the question allowed for variability in parents’ responses and therefore required some judgment on the part of the one coder. For purposes of reliability, a second independent rater was randomly assigned 16% of the sample for each grade. Interrater agreement was determined by computing a single-measure intraclass correlation coefficient of .78 for both grades combined.

Parental involvement. Level of parental involvement with school was assessed at Grades 1 and 3 by interviews with each child’s teacher at each grade level. In most cases, participants had different teachers each year. Interviews were scheduled during the spring quarter of the school year. Each year, teachers were asked (a) whether they knew the parents, (b) whether the parents demonstrated concern and interest in the child’s schoolwork, and (c) whether the parents participated in parent conferences or other meetings with the teacher. Two independent raters coded teachers’ responses on a 5-point scale, with 1 being not involved and 5 being very involved. Additionally, 25% of the sample for each grade, randomly selected, was coded for reliability. The intraclass correlation for both grades combined was .82.

Child’s achievement. In the spring of first and third grades, teachers were asked to rate the child’s overall academic progress compared with typical students in the same grade. Teachers rated each child’s progress on a 5-point scale ranging from very poor to outstanding. This measure allowed for uniform assessment of academic progress across various grading systems (e.g., letter grades vs. satisfactory/unsatisfactory ratings) used within different schools. In previous work, similar measures predicted school grades (see, e.g., Stevenson & Baker, 1987). Additionally, compared with standardized achievement test scores, teachers’ ratings of performance may be a more accurate and sensitive measure of children’s actual classroom achievement (Keith et al., 1998; Stevenson & Baker, 1987).

Data Analysis Plan

We developed a path analysis model to reflect the hypothesized relations among the variables. Path analysis is an important methodological tool for disentangling the effects of various predictors and understanding how a group of variables interrelates in complex patterns. This technique allows for the examination of theory-driven models that identify not only possible direct pathways but also indirect paths contributing to the prediction of a specified dependent variable (Maruyama, 1998). Direct effects establish a direct relation from one variable to another, whereas indirect effects indicate that the relation between two variables is mediated by one or more additional variables (Maruyama, 1998). Because of the correlational nature of our data, causality could not be determined; rather, our intent was to understand how the variables interrelated over time and to test our proposed model.

The proposed model (see Figure 1) includes the expected direct and indirect effects of the variables over time. Mothers’ educational level was expected to have direct effects on mothers’ quality of instruction, children’s IQ, parental expectations in first grade, and parental involvement with school in first grade. Mothers’ quality of instruction prior to school entry was expected to have direct effects on later IQ and children’s achievement in first grade. Children’s IQ was expected to have direct effects on parental expectations, parental involvement, and children’s achievement in first grade. We further expected parental expectations, parental involvement, and children’s achievement to have significant effects on each other over time such that (a) parental expectations would have direct effects on parental involvement and children’s achievement at the same grade, (b) parental involvement would have direct effects on children’s achievement at the same grade, and (c) children’s achievement in first grade would have direct effects on both parental expectations and parental involvement in third grade.

We also compared the model fit of the full model with the model fit of an alternative model that does not include parental involvement, parental expectations, or mother’s quality of instruction. This alternative model includes mother’s educational level, children’s IQ, and children’s achievement in first grade and third grade. Comparing these two models allowed us to assess whether adding the parenting variables to the model contributed significantly to the model fit.
Results

Correlations

To examine the relations between the variables, we calculated Pearson product–moment correlations (see Table 1). Means and standard deviations were also noted. As hypothesized, all zero-order correlations among the variables were statistically significant at $p < .05$.

Path Analysis

All analyses involved 187 cases. The path analysis was tested using the statistical software program LISREL 8.5. Missing data points (6%) for the cases were estimated by using estimation maximization (EM) in PRELIS (Schafer, 1997). Multiple imputation under EM uses an iterative procedure to estimate missing data. This method for handling missing data is superior to other missing-data approaches, such as listwise or pairwise deletion, in that it provides more accurate standard errors and test statistics (Allison, 2002). EM performs well with samples as small as 50 (Graham & Schafer, 1999).

The full model fits the data significantly better than the alternative model that eliminates the parenting variables of interest, $\Delta \chi^2(12, N = 187) = 25.11, p < .05$. Results of the path analysis for the full model are in Figure 2. The unstandardized, standardized, and statistical significance levels for the path model estimates are shown in Table 2. The overall model is an acceptable fit of the data, $\chi^2(15, N = 187) = 34.62, p < .01$, root-mean-square error of approximation $= .08$, comparative fit index $= .96$, goodness-of-fit index $= .96$, normed fit index $= .96$.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mother’s education</td>
<td>—</td>
<td>.36</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Quality of instruction</td>
<td>.36</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. WPPSI</td>
<td>.37</td>
<td>.46</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. Parental involvement 1st grade</td>
<td>.35</td>
<td>.26</td>
<td>.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. Parental involvement 3rd grade</td>
<td>.43</td>
<td>.26</td>
<td>.22</td>
<td>.34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. Parental expectations 1st grade</td>
<td>.48</td>
<td>.23</td>
<td>.38</td>
<td>.21</td>
<td>.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. Parental expectations 3rd grade</td>
<td>.27</td>
<td>.27</td>
<td>.38</td>
<td>.15</td>
<td>.29</td>
<td>.52</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8. Academic achievement 1st grade</td>
<td>.25</td>
<td>.33</td>
<td>.54</td>
<td>.24</td>
<td>.27</td>
<td>.28</td>
<td>.30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9. Academic achievement 3rd grade</td>
<td>.27</td>
<td>.31</td>
<td>.46</td>
<td>.10</td>
<td>.33</td>
<td>.29</td>
<td>.32</td>
<td>.61</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>11.83</td>
<td>8.91</td>
<td>43.37</td>
<td>3.56</td>
<td>3.34</td>
<td>3.25</td>
<td>3.48</td>
<td>2.97</td>
<td>2.91</td>
</tr>
<tr>
<td>SD</td>
<td>1.78</td>
<td>2.81</td>
<td>8.65</td>
<td>0.98</td>
<td>1.10</td>
<td>1.11</td>
<td>1.05</td>
<td>1.07</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Note. All correlations are significant at $p < .05$. WPPSI = Wechsler Preschool and Primary Scale of Intelligence.
.93, and accounts for 41% of the variance in children’s achievement in third grade.

Mothers’ educational level at their children’s birth significantly predicted mothers’ quality of instruction in a teaching task at 42 months (β = .35, t = 5.17) and their children’s IQ at 64 months (β = .23, t = 3.45). Mothers’ educational level also significantly predicted both parental involvement with school in first grade (β = .27, t = 3.43) and parental expectations in first grade (β = .40, t = 5.95) after controlling for children’s IQ at 64 months. In addition, mothers’ educational level had statistically significant indirect effects on parental involvement in third grade (β = .19, t = 4.93), parental expectations in first grade (β = .08, t = 2.90) and third grade (β = .27, t = 5.71), IQ (β = .13, t = 3.78), and children’s achievement in first grade (β = .25, t = 5.00) and third grade (β = .20, t = 5.21). Mothers’ quality of instruction had a significant direct effect on children’s IQ (β = .38, t = 5.55) and significant indirect effects on children’s achievement in first grade (β = .18, t = 4.35) and third grade (β = .16, t = 3.68). Children’s IQ had significant direct effects on parental expectations in first grade (β = .23, t = 3.45), parental involvement in first grade (β = .21, t = 2.82), and children’s achievement in first grade (β = .45, t = 6.17) and significant indirect effects on parental expectations in third grade (β = .19, t = 4.14), parental involvement in third grade (β = .17, t = 3.97), and children’s achievement in third grade (β = .31, t = 6.13).

Although neither parental involvement with their children’s school in first grade nor parental expectations for their children’s educational attainment in first grade predicted first-grade achievement after controlling for IQ, first-grade achievement did add significant variance to the prediction of parental involvement in third grade (β = .14, t = 2.01) and parental expectations in third grade (β = .17, t = 2.53). Parental expectations in third grade added significant variance to the prediction of parental involvement with school in third grade (β = .21, t = 3.00) after controlling for children’s achievement in first grade. Additionally, parental involvement in third grade (β = .15, t = 2.52) added significantly to the prediction of children’s achievement in third grade after controlling for previous achievement. Furthermore, parental expectations in first grade (β = .11, t = 2.30) and mothers’ quality of instruction at 42 months (β = .16, t = 3.68) had indirect effects on children’s achievement in third grade.

Discussion

We proposed a model examining the relations between parental beliefs, parental behavior, and children’s achievement through early elementary school. We hypothesized that parents’ educational level would relate to parents’ quality of instruction, children’s IQ, parents’ involvement with school, and parents’ expectations for their children’s educational attainment. We also proposed that parents’ quality of instruction prior to school entry would have direct effects on children’s IQ and achievement early in school. Furthermore, we anticipated that a cumulative process would occur whereby (a) parental expectations would directly
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

The results do not fully support a cumulative process among parents’ beliefs, parents’ behavior, and children’s achievement; they do suggest the possibility of bidirectional relations among these variables. When children in our sample had higher (vs. lower) achievement in first grade, their parents were more likely to have higher educational expectations for them and were more involved with their children’s school in third grade. In third grade, parents with higher (vs. lower) expectations for their children’s educational attainment were more likely to be involved in their children’s school. Those parents who were more involved in third grade had higher achieving children in third grade even after controlling for prior achievement. These effects are small, however. Additional research that examines the relation between parents’ beliefs, parents’ behavior, and children’s achievement in other data sets and over longer periods of time could provide further evidence of the hypothesized cumulative process between these variables. Further support for this bidirectional process would help to explain the seemingly divergent findings from previous work examining the relation between parental involvement and children’s achievement.

We are cautious in interpreting these correlational data. Causality cannot be determined. Additionally, we examined only whether the model accurately reflected the relation among the variables under investigation. Other variables not included in this model may add to an understanding of how parents influence their children’s achievement in school. Furthermore, parental involvement was measured on the basis of teachers’ reports of parental involvement in school activities, such as parent–child conferences, and did not include parents’ involvement with their children at home.

Table 2
Unstandardized, Standardized, and Significance Levels for the Full Model (Standard Errors in Parentheses; N = 187)

<table>
<thead>
<tr>
<th>Path model estimates</th>
<th>Unstandardized</th>
<th>Standardized</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s education → Mother’s quality of instruction</td>
<td>.35 (.07)</td>
<td>.35</td>
<td>5.17</td>
</tr>
<tr>
<td>Mother’s education → IQ</td>
<td>.23 (.07)</td>
<td>.23</td>
<td>3.45</td>
</tr>
<tr>
<td>Mother’s quality of instruction → IQ</td>
<td>.38 (.07)</td>
<td>.38</td>
<td>5.55</td>
</tr>
<tr>
<td>Mother’s education → 1st-grade parent expectations</td>
<td>.40 (.07)</td>
<td>.40</td>
<td>5.95</td>
</tr>
<tr>
<td>IQ → 1st-grade parent expectations</td>
<td>.23 (.07)</td>
<td>.23</td>
<td>3.45</td>
</tr>
<tr>
<td>Mother’s education → 1st-grade parent involvement</td>
<td>.27 (.08)</td>
<td>.27</td>
<td>3.43</td>
</tr>
<tr>
<td>IQ → 1st-grade parent involvement</td>
<td>.21 (.07)</td>
<td>.21</td>
<td>2.82</td>
</tr>
<tr>
<td>1st-grade parent expectations → 1st-grade parent involvement</td>
<td>.00 (.08)</td>
<td>.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Mother’s quality of instruction → 1st-grade achievement</td>
<td>.08 (.07)</td>
<td>.08</td>
<td>1.22</td>
</tr>
<tr>
<td>IQ → 1st-grade achievement</td>
<td>.45 (.07)</td>
<td>.45</td>
<td>6.17</td>
</tr>
<tr>
<td>1st-grade parent expectations → 1st-grade achievement</td>
<td>.08 (.07)</td>
<td>.08</td>
<td>1.13</td>
</tr>
<tr>
<td>1st-grade parent involvement → 1st-grade achievement</td>
<td>.06 (.06)</td>
<td>.06</td>
<td>0.97</td>
</tr>
<tr>
<td>1st-grade parent expectations → 3rd-grade parent expectations</td>
<td>.47 (.07)</td>
<td>.47</td>
<td>7.15</td>
</tr>
<tr>
<td>1st-grade parent involvement → 3rd-grade parent expectations</td>
<td>.01 (.06)</td>
<td>.01</td>
<td>0.20</td>
</tr>
<tr>
<td>1st-grade achievement → 3rd-grade parent expectations</td>
<td>.17 (.07)</td>
<td>.17</td>
<td>2.53</td>
</tr>
<tr>
<td>1st-grade parent involvement → 3rd-grade parent involvement</td>
<td>.27 (.07)</td>
<td>.27</td>
<td>4.04</td>
</tr>
<tr>
<td>1st-grade achievement → 3rd-grade parent involvement</td>
<td>.14 (.07)</td>
<td>.14</td>
<td>2.01</td>
</tr>
<tr>
<td>1st-grade achievement → 3rd-grade achievement</td>
<td>.53 (.06)</td>
<td>.53</td>
<td>8.84</td>
</tr>
<tr>
<td>3rd-grade parent expectations → 3rd-grade parent involvement</td>
<td>.21 (.07)</td>
<td>.21</td>
<td>3.00</td>
</tr>
<tr>
<td>3rd-grade parent involvement → 3rd-grade achievement</td>
<td>.15 (.06)</td>
<td>.15</td>
<td>2.52</td>
</tr>
<tr>
<td>3rd-grade parent expectations → 3rd-grade achievement</td>
<td>.12 (.06)</td>
<td>.12</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Note. The t value is a test of significance such that t > 1.96 is equivalent to p < .05.
on school-related matters. We emphasize that only 16% of first-grade variance and 19% of third-grade variance in parental involvement were accounted for in this model. Obviously, many other factors in addition to children’s achievement and parental expectations affect overall levels and changes in parental involvement with school. Because of the nature of our low-income sample, many of the families experienced instability across this time period (e.g., life stress, mobility, change in employment status, and changes in child’s school) that could have influenced parents’ involvement in their children’s school. In addition, teacher–parent relationships, parents’ work schedules, transportation issues, and school climate have all been found to influence parental involvement over time (Christenson & Sheridan, 2001; Fantuzzo, Tighe, & Childs, 2000; Hoover-Dempsey & Sandler, 1997). It is likely that these factors had some impact on parents’ involvement with school in our sample.

Because the sample was relatively small, different models based on sex or ethnicity could not be examined. Future research should attempt to include a larger sample so that sex and ethnic differences can be further explored. Furthermore, although diverse ethnically, the sample was low SES from a large Midwestern city. Other samples should be examined to determine whether similar effects are found across income levels.

Additional research exploring the possible influence of parental involvement with school on teachers’ perceptions and interactions with children is needed. Teacher–child interactions do affect children’s achievement (see, e.g., Burchinal, Peisner-Feinberg, Pianta, & Howes, 2002). These interactions may in part be affected by teachers’ perceptions of the children and their parents. These perceptions may be partially shaped by teachers’ interactions with parents. In addition, the long-term effects of early parenting factors on later school achievement need to be investigated. Longitudinal research has the potential to separate those early parenting factors that are important for later achievement from those that are incidental.

References

Okpala, C. O., Okpala, A. O., & Smith, F. E. (2001). Parental involvement,

New Editor Appointed for History of Psychology

The American Psychological Association announces the appointment of James H. Capshew, PhD, as editor of *History of Psychology* for a 4-year term (2006–2009).

As of January 1, 2005, manuscripts should be submitted electronically via the journal’s Manuscript Submission Portal (www.apa.org/journals/hop.html). Authors who are unable to do so should correspond with the editor’s office about alternatives:

James H. Capshew, PhD
Associate Professor and Director of Graduate Studies
Department of History and Philosophy of Science
Goodbody Hall 130
Indiana University, Bloomington, IN 47405

Manuscript submission patterns make the precise date of completion of the 2005 volume uncertain. The current editor, Michael M. Sokal, PhD, will receive and consider manuscripts through December 31, 2004. Should the 2005 volume be completed before that date, manuscripts will be redirected to the new editor for consideration in the 2006 volume.